
LLNL-PRES-689302
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Investigation of Portable Event-
Based Monte Carlo Transport	
COE	Phoenix,	AZ	

Ryan	Bleile	
Lawrence	Livermore	Na;onal	Laboratory	

University	of	Oregon,	Eugene	

April 20, 2016

LLNL-PRES-689302
2	

Current Landscape of Architectures

–  GPU (NVIDIA)
•  Sub-architectures :

–  Fermi, Kepler, Maxwell
•  Multiple Memory Types:

–  Global, shared,
constant, texture

•  Memory Amount:
–  Up to 12 GB

•  1000s of threads
–  Grids, blocks, and

warps

–  CPU/MIC
•  Multiple ISAs:

–  Vector Unit Widths:
»  2,4,8 / 16

•  Single Memory Type
–  Shared/private caches

•  Larger Memory Size (CPU)
•  Up to 20/60 threads

–  No explicit organization

*Slide courtesy of Matthew Larsen
 University of Oregon, CDUX research group

LLNL-PRES-689302
3	

The	Problem	

•  Forces developers to either:
– Pick a target architecture
– Add additional implementations of the same

algorithm:

A B C D E F Algorithm

Architecture

*Slide courtesy of Matthew Larsen
 University of Oregon, CDUX research group

LLNL-PRES-689302
4	

Data-Parallel	Primi0ves	Libraries	

A B C D E F Algorithm

Backend

Data Parallel
Framework

§  Backend	–	Implement	fast	parallel	primi;ve	operators	for	each	
new	architecture	

§  Frontend	–	Re-think	current	algorithms	in	terms	of	the	
primi;ves	

*Slide courtesy of Matthew Larsen
 University of Oregon, CDUX research group

LLNL-PRES-689302
5	

Data	Parallel	Primi0ves	(DPP)	

§ What	are	they?	
—  Provide	a	level	of	abstrac;on	based	on	Blelloch’s	parallel	primi;ve	

operators	
—  Provides	node	level	parallelism	

§  Big	challenge	
—  “re-thinking”	algorithms	to	use	DPP	
— Not	“por;ng”	algorithms	to	DPP	

§  Benefits	
—  Portable	performance	
—  Future	proof	implementa;ons	

§ What	is	a	DPP	
—  If	it	can	be	completed	in	O(logN)	where	N	is	the	array	size	than	it	can	be	a	

DPP	

5

LLNL-PRES-689302
6	

§ Map	
—  Parallel	for	each	loop	

§  Gather	/	Sca^er	
—  Index	set	array	opera;ons	

§  Scan	
—  Index	crea;on	scheme	

§  Reduce	
—  Coun;ng	/	Narrowing	results	

Data	Parallel	Opera0ons	

Input

Output

Input

Output

Input

Output

Input

Output

LLNL-PRES-689302
7	

§  Previous	work	done	in	research	group	at	UO	
—  Ray	Tracing	

•  Promising	results	
•  Using	VTK-m,	EAVL,	etc…	

§  Applying	this	technique	to	Monte	Carlo	Transport	
— Many	possible	avenues	to	consider	

•  Thrust		
–  supports	data	parallel	opera;ons	

•  RAJA	style	
–  Supports	simplifying	key	ideas	with	a	template/MACRO	defini;on	

Portable	Performance	–	Abstrac0on	Layer	

LLNL-PRES-689302
8	

§  Models	par;cle	transport	in	a	1D	binary	stochas;c	medium	

§  Par;cles	are	created	and	then	tracked	through	a	series	of	events	

§  Tallies	of	mul;ple	types	are	incremented	
—  Single	Value:	Reflec;on,	Transmission	
— Mul;	Value	(per	material):		Absorp;on,	Sca^er	
— Many	Value	(per	zone):	Zonal	Flux	

§  Legacy	approach	(history-based)	did	not	lend	itself	to	many-core	

§  Recent	work	takes	a	new	approach	(event-based)	that	is	suitable	for	
many-core	systems		
(Inves;ga;on	of	Portable	Event-Based	Monte	Carlo	Transport	Using	the	NVIDIA	
Thrust	Library.	in	press.)	

Monte	Carlo	Transport	–	ALPS_MC	

LLNL-PRES-689302
9	

§  Determine	a	batch	size	
— How	many	par;cles	fit	in	GPU	memory	

§  For	a	given	batch	
— Generate	all	par;cles	in	batch	
— While	any	par;cles	lem	to	compute	

•  For	each	event	X	
–  Get	par;cles	whose	next	event	is	X	
–  Do	event	X	and	compute	their	next	event	

•  Delete	killed	par;cles	

§  3	events	tracked	
—  Collision	
— Material	interface	crossing	
—  Zonal	boundary	crossing	

§  Excluded	zonal	flux	tally	as	future	work	to	study	its	effect	

Event	based	algorithm	-	overview	

LLNL-PRES-689302
10	

§  Par;cle	class	contains	many	variables		
—  (3	ints,	1	Long,	6	doubles)	
—  Real	case	scenarios	contain	even	larger	classes	

§  Not	all	variables	used	in	each	kernel	
—  Reduce	size	of	memory	reads	and	writes	

§  Coalesced	memory	access	with	SOA	

§  Reduced	memory	usage	in	kernel	

AOS	and	SOA	Par0cle	Data	Structure	

LLNL-PRES-689302
11	

§  Reorganizing	par;cles	is	costly	
— More	costly	then	all	compute	kernels	combined	

§  Only	call	remove	func;on	when	it	makes	an	impacqul	change	to	
array	size	

§  If	number	to	kill	>=	par;cles_remaining.size()	/	2;	
—  Decreases	amount	of	;me	spent	removing	par;cles	
—  Increase	amount	of	;me	needed	to	establish	compute	kernels	

New	Par0cle	Removal	Scheme	

LLNL-PRES-689302
12	

§  Explicitly	managed	GPU	memory	(cudaMalloc,	etc.)	

§ Modified	CUDA	version	first		
— Made	new	Thrust,	RAJA	methods	from	op;mized	CUDA	method	

§  Changed	par;cle	data	structure	to	allow	SOA	or	AOS	

§  Kernels	read/write	strategy	changed	to	ensure	-	read,	compute,	
write	pa^ern	upheld	

§  New	par;cle	removal	scheme	

Details	of	Implementa0on	

LLNL-PRES-689302
13	

§  Studies	in	CUDA	to	understand	performance	

Results	–	10	Million	Par0cle	Study	

(runtime in
seconds)

SOA AOS SOA
(kill/2)

AOS
(kill/2)

SOA
(sort)

Collision 0.77 0.89 0.93 1.03 0.92
Zone
Boundary

0.62 0.79 0.75 0.93 0.74

Material
Interface

0.70 1.11 0.92 1.33 0.91

Compute
Total

2.09 2.80 2.59 3.28 2.57

Remove /
Sort

3.95 2.31 0.36 0.42 1.08

Total Time 6.04 5.11 2.95 3.70 3.65

LLNL-PRES-689302
14	

§  Using	one	GPU	device	(½	K80)	
—  Results	From	Paper:	

	

— Newest	Results:	

Results	–	100	Million	Par0cle	Study	

(runtime in seconds) AOS
Serial 508.74
Thrust 234.30
CUDA 48.39

(runtime in
seconds)

AOS %
slowdown

SOA %
slowdown

CUDA 38.68 - 31.43 -
Thrust 57.77 33% 33.84 8%
RAJA Like 42.10 8% 31.92 2%

LLNL-PRES-689302
15	

§  Spending	;me	to	make	the	SOA	changes	and	directly	managing	
CUDA	memory	paid	off	in	performance	for	all	versions	

§  Star;ng	with	CUDA,	backing	out	an	abstrac;on	layer	was	simple	

§  Ini;al	pass	abstrac;on	layer	a^empt	suffered	significant	
performance	degrada;on	
—  Lessons	learned	now	can	pay	off	down	the	line	in	future	a^empts	at	

star;ng	with	an	abstrac;on	layer	

§  DPP	portable	performance	approach	promising	for	event	based	
Monte	Carlo	transport	

Conclusion	

LLNL-PRES-689302
16	

§  This	work	was	performed	under	the	auspices	of	the	U.S.	
Department	of	Energy	by	Lawrence	Livermore	Na;onal	
Laboratory	under	Contract	DE-AC52-07NA27344.	

§  Funding	for	this	work	was	provided	by	the	LLNL	Livermore	
Graduate	Scholar	Program.	

§  Research	advisors	Patrick	Brantley	(LLNL),	Hank	Childs	(UO),	
Ma^	O’Brien	(LLNL).	

Acknowledgements	

LLNL-PRES-689302
18	

§  Using	1	GPU	device	(½	K80)	

§  Using	4	GPU	devices	(2	K80s)	

Results	–	80	Million	Par0cles	Study	

(runtime in
seconds)

AOS % slowdown SOA % slowdown

CUDA 1.00 - 0.79 -
Thrust 1.99 49% 1.38 43%
RAJA Like 1.17 15% 0.79 0%

(runtime in
seconds)

AOS % slowdown SOA %slowdown

CUDA 0.27 - 0.23 -
Thrust 0.91 70% 0.78 71%
RAJA Like 0.32 16% 0.23 0%

LLNL-PRES-689302
19	

§  Using	4	GPU	devices	(2	full	K80s)	
	
	
	

	

§  Thrust	SOA	method	scaling	on	mul;ple	devices	more	effec;vely	

§  Only	minor	performance	losses	using	RAJA	over	direct	CUDA	

Results	–	100	Million	Par0cle	Study	cont.	

AOS SOA
CUDA 17.74 [s] 15.84 [s]
Thrust 18.34 [s] 11.37 [s]
RAJA Like 18.64 [s] 15.92 [s]

LLNL-PRES-689302
20	

§  100	Million	Par;cle	Study	–	Done	on	CPU	
—  [SOA 	 	AOS]	
—  Thrust: 			XXX.XX	 	XXX.XX	
—  RAJA	like: 			XXX.XX	 	XXX.XX	
—  Thrust	History: 	 	XXX.XX	 	 		
— OMP	History:				 	 	XXX.XX	

§  Comment	on	OMP	results	

§  Comment	on	Portability	of	event	versus	history	

[results	not	yet	determined]	

Results	–	CPU	Portability	

